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Monte Carlo Methods

• Solve complex problems using random sampling from a
probablity distribution (i.e. stochastic description).

• Useful to evolve a physical system to a new state from an
esemble of potential future states.

Integrating a function MC sampling

• If we want to evaluate the integral of a function over some
domain we can numerically approximate this using the
midpoint rule:

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 = 𝑏 − 𝑎

𝑁

𝑁
∑
𝑖=1

𝑓(𝑥𝑖) (0.1)

• There is an alternative way to do this using probablity
theory to determine the expectation value of a function
𝑓(𝑥) for random variable 𝑥:

∫
𝑏

𝑎
𝑝(𝑥)𝑓(𝑥)𝑑𝑥 = 𝑏 − 𝑎

𝑁

𝑁
∑
𝑖=1

𝑓(𝑥𝑖) (0.2)
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where 𝑝(𝑥) is a uniform probablity distribution over the
interval [𝑎, 𝑏].

• The difference between numerically evaluating Equa-
tion 0.1 and Equation 0.2, is that Equation 0.1 is
evaluated over a grid of points and Equation 0.2 is
randomly sampled points.

• The error of MC integration is ∝ 1√
𝑁 as a result of central

limit theorem

Example integrating a function using MC
sampling1
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Figure 0.1: Random sampled points from uniform distribution
over the interval [1, 4]. The black points are those
that are accepted.

1A more detailed notebook implementing the code can be viewed here
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Example integrating a function using MC
sampling
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Figure 0.2: Integration of 𝑙𝑜𝑔(𝑥) using MC.

Statistical Thermodynamics & Ensemble
Properties

• Microscopic → Macroscopic description

– How positions and momenta of 1023 particles relates
to bulk temperature, pressure, or volume.

• Ensembles use probablity of specific microstate. Proba-
bility theory provides average of a function or variable,
⟨𝑋⟩:

⟨𝑋⟩ = 1
𝑁

𝑁
∑
𝑖=1

𝑛𝑖 𝑋𝑖 =
𝑁

∑
𝑖=1

𝑝𝑖⏟
PDF

𝑋𝑖 (0.3)

• If ⟨𝑋⟩ is continous, Equation 0.3 is an integral.
• 𝑝𝑖 is the probablity the system is in state 𝑖. The prob-

ablity density function (PDF) has the property that its
normalized, i.e. ∑𝑁

𝑖=1 𝑝𝑖 = 1
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Statistical Thermodynamics & Ensemble
Properties

• The consqequence of Equation 0.3 is that microscopic col-
lections (i.e. ensemble of systems) can be used to calculate
macroscopic properties.

• Choice of 𝑝𝑖 = 𝑧𝑖
𝑍 depends on macroscopic conditions

which manifest through the partition function:

𝑍 = ∑
𝑖

𝑒−𝛽 𝑋𝑖 (0.4)

• For a macroscopic system that has constant particles,
volume and temperature, i.e., canonical.

– 𝛽 = 1
𝑘𝑏 𝑇 and 𝑋𝑖 = 𝐸𝑖 where Boltzmann factor is

𝑧𝑖 = 𝑒− 𝐸𝑖
𝑘𝑏 𝑇

⟨𝐸⟩ = 1
𝑍

∑
𝑖

𝑒− 𝐸𝑖
𝑘𝑏 𝑇 𝐸𝑖 (0.5)

Statistical Thermodynamics & Ensemble
Properties

• The biggest challenge in evaluating Equation 0.5 is it
requires knowledge of all possible configurations.

• If 𝑍 is a configurational integral, e.g., 𝑍 = ∫ 𝑒−𝑈(r𝑁)/𝑘𝐵 𝑇𝑑r𝑁,
then there are 3𝑁 possible configs!

• The key insight is that most configurations are not proba-
ble:

– If the two atoms are extremely close at moderate 𝑇,
the term 𝑈(r) is large an hence the probablity low.

• The question then becomes, can we determine
𝑝𝑖 = 1

𝑍𝑒− 𝐸𝑖
𝑘𝐵 𝑇 efficiently, that is the states with

highest probablity centered around ⟨𝐸⟩ given that 𝑍 is
not accessible.

𝑈(r) is the potential energy between
pairs of atoms.
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Metropolis Monte Carlo

• If we wanted to evaluate Equation 0.5 for an atomic sys-
tem (i.e. the discrete states are replaced by continous
atomic configurations), we could use the MC sampling as
in Equation 0.2.

• However we need to integrate over 3𝑁 dimensions!
• This eliminates the feasability for determining the parti-

tion function 𝑍 which is required to know the probablity
of any specific configuration 𝑝𝑖

Metropolis Monte Carlo

• The Metropolis algorithm is a process to sample states 𝑖
with probablity 𝑝𝑖

• This is achieved by using relative probablities, i.e., 𝑝𝑖
𝑝𝑗

• From this we get the correct average quantities.
• This works because, even though we don’t know 𝑍 and

can’t determine 𝑝𝑖, the results of 𝑝𝑖
𝑝𝑗

gives the correct
distribution

• Relative probablities are given as:

𝑝𝑖
𝑝𝑗

= 𝑒−𝐸𝑖/ 𝑘𝐵 𝑇

𝑍
𝑍

𝑒−𝐸𝑗/ 𝑘𝐵 𝑇 = 𝑒−(𝐸𝑖−𝐸𝑗)/ 𝑘𝐵 𝑇 (0.6)

• Which only depends on energy difference between states
as shown in graph
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Metropolis Monte Carlo
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Figure 0.3: Relative probablity for two states.

Metropolis Monte Carlo

• In the metropolis MC approach we use the relations on
Figure 0.3 to create a trajectory of states.

• The steps for MMC are:

1. Generate configuration 𝑖 with 𝐸𝑖
2. Randomly trial configuration, 𝑖 + 1, and calculate

𝐸𝑖+1
3. Get relative probablity via Equation 0.6.
4. Use relations in Figure 0.3 to accept or accept with

probability 𝑝𝑖
𝑝𝑗

< 1 given a randomly generated num-
ber betwen (0, 1)

5. If accepted, add 𝑖 + 1 to trajectory, otherwise add 𝑖
again2. Repeat until quantity ⟨𝑋⟩ = 1

𝑁 ∑𝑁
𝑖=1 𝑋𝑖

2It is required to add the previous configuration 𝑖 to the trajectory if the
configuration 𝑖 + 1 is rejected in order to ensure the distribution is valid
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Metropolis Monte Carlo
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Figure 0.4: Acceptance and rejection of Metropolis MC (see
LeSar (2013)).

Backmatter

Connect with me!

stefanbringuier@gmail.com

Github LINKEDIN GOOGLE

9

https://www.stefanbringuier.info
mailto:stefanbringuier@gmail.com
https://github.com/stefanbringuier
https://linkedin.com/in/stefanbringuier
https://scholar.google.com/citations?user=MhJTimgAAAAJ&hl=en


Info Note

This presentation can be viewed online at https://stefan
bringuier.github.io/KMCNotes. A report formated PDF
of this presentation can be downloaded here.

LIGHTBULB Tip

To export revealjs presentations to pdf, press ‘e’ then
‘ctrl-p’ � ‘save as pdf’
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