Problem 3. Let M be a 2 x 2 matrix and MT the transpose. If |0 and |1 are standard basis in C2, then show that:

(MI2)(|0|0+|1|1)=(I2MT)(|0|0+|1|1)

12.4 μs

Solution 3. Let us first look at the tensor product MI2 and I2M. Note that I2 is a 2x2 identity matrix.

18.5 μs
10.4 s
57.0 μs
1.6 s
𝓞₁

[M0M00M0MM0M00M0M] 

33.9 ms
𝓞₂

[MM00MM0000MM00MM] 

1.6 ms
173 ms
683 ms
1.8 ms

Lets see if these two expressions are equivalent with |ψ1=MI2|ψ1 and |ψ2=I2M|ψ2:

|ψ1=[MMMM]

|ψ2=[MMMM].

In fact they are not. Now lets see if MT makes a difference for |ψ2=I2MT|ψ2.

2.5 ms
34.5 ms
true
172 μs

Indeed the are equal:

|ψ1=[MMMM]

|ψ2=[MMMM].

What happens for the orthonormal basis:

|ψ1=(cosθsinθ)|ψ2=(sinθcosθ)

2.6 ms
521 ms
expr4

[M(sin2(θ)+cos2(θ))M(sin2(θ)+cos2(θ))M(sin2(θ)+cos2(θ))M(sin2(θ)+cos2(θ))] 

5.7 ms
expr5

[M(sin2(θ)+cos2(θ))M(sin2(θ)+cos2(θ))M(sin2(θ)+cos2(θ))M(sin2(θ)+cos2(θ))] 

1.4 ms

Indeed they are the same:

19.1 μs
true
278 ms