Problem 1. Given the Pauli matrices

σx=(0110),σy=(0ii0),σz=(001)

and a hermitian matrix that has dimensions 8x8 and written as:

H=(σxσx+σyσy+σzσz)σx.

Find the eigenvalues and and eigenvectors.

26.5 μs

Solution 1. The interesting thing to note here is that the hermitian matrix can be written as the direct sum:

H=(0110)(0102102002012010)(0110)

This means that the eigenspectrum can be calculated from the 2×2 and 4×4 matrices.

19.3 μs
11.7 s
658 μs
168 μs

The hermitian matrix given by the expression above is then:

14.5 μs
H

[0100000010000000000102000010200000020100002010000000000100000010] 

12.7 ms

Now just checking the direct sum comparison.

15.1 μs

[0100000010000000000102000010200000020100002010000000000100000010] 

65.8 ms
341 μs

Now finding the eigenvalues and eigenvectors

14.6 μs
252 ms
99.4 μs

H:[λ1=3, λ2=1, λ3=1, λ4=3]

102 ms

Let see how these eigenvalues compare to the eigenvalues of the matrix D.

15.8 μs
246 ms

D:[λ1=3, λ2=1, λ3=1, λ4=3]

we find that the eigenvalues are the same but the degeneracy is now removed. We can look at the eigenvectors the the D matrix:

75.1 ms
83.1 μs

eigenvector index 1

14.3 μs

[1111]

2.3 ms