Problem 2. Starting with the identity matrix I of shape n×n and a invertible matrix XCn2×n2. Now if we say that X satisfies the Yang-Baxter equation[1] :

(XI)(IX)(XI)=(IX)(XI)(IX)

then X satisfies the equation (as well as X1). Now if take an invertable matrix QCn×n and express a new matrix as:

X=(QQ)X(QQ)1

which also satisfies the Yang-Baxter equation. Now show that given the matrix:

X=1+i2(1001011001101001)

will satisfy the Yang-Baxter equation when I has size 2×2.

36.1 μs

Solution 2. The first thing to do is construct the matrices X and I2

22.4 μs
11.7 s
* (generic function with 413 methods)
109 μs
925 μs
28.3 ms

size of I is 2×2

9.0 μs
362 μs

Now create a function corresponding to the Yang-Baxter equation.

8.9 μs
60.3 μs
149 ms

evaluate the symmetry:

15.9 μs
204 ms
true
1.1 ms

The matrices given by the tensor products is:

15.7 μs

[00012+i20012+i200012+i2000012+i2012i20012+i200012i2000012+i2000012i2000012+i200012i20012+i2012i2000012i200012i20012i2000] 

122 ns

[00012+i20012+i200012+i2000012+i2012i20012+i200012i2000012+i2000012i2000012+i200012i20012+i2012i2000012i200012i20012i2000] 

82.0 ns

1

I believe this equation is related to topological quantum computation

18.2 μs