Problem 3. Consider a set of vectors {S} in a Hilbert space Cn. Let u{S}. A function f(u) that maps {S} to R is called a generalized probability measure when the following conditions two conditions are held:

  1. u{S}:0f(u)1

  2. Then u1,,un forms an orthonormal basis in Cn. Then it follows that i=1nf(ui)=1.

If we take n3, then the probability measure of f over Cn has the form:

f(ρ)=tr(ρuu)

  1. a Find the f(u1),,f(u3) given the C3 with orthonormal basis and density matrix:

u1=12(101)u2=(010)u3=12(101),

ρ=13(111111111)

  1. Do the same but consider Hilbert space C4 with orthonormal basis and density matrix:

u1=12(eiϕ00eiϕ)u2=(eiϕ00eiϕ)u3=12(0eiϕeiϕ0)u4=12(0eiϕeiϕ0)

ρ=14(1111111111111111)

18.2 μs

Solution 3.

8.6 μs
314 μs
75.9 ms
135 ms
220 μs

Evaluating the function f(ρ,u) for each orthonormal basis:

f(ρ,u1)=23

f(ρ,u2)=16

f(ρ,u3)=0

51.1 ms

Now calculating the same for a Hilbert space of C4 as described in the problem statement.

7.8 μs
118 ms

Evaluating the function f(ρ,u) for each of these orthonormal basis:

f(ρ,v1)=12

f(ρ,v2)=cos(2ϕ)+14

f(ρ,v3)=12

f(ρ,v4)=cos(2ϕ)+14

137 ms

Interestingly we see that in this orthonormal basis set there is a dependence on ϕ

8.1 μs
244 ms
270 ms