Problem 3. Consider a set of vectors
Then
forms an orthonormal basis in . Then it follows that .
If we take
a Find the
given the with orthonormal basis and density matrix:
Do the same but consider Hilbert space
with orthonormal basis and density matrix:
Solution 3.
xxxxxxxxxxbegin using SymPy using Plots pyplot()end;x
begin 𝑖,𝑒,π,ϕ = sympy.I, sympy.E, sympy.pi,sympy.symbols("ϕ",real=true) halfsqrt = 1/sympy.sqrt(2) 𝚝𝚛(X) = sympy.trace(X) dagger(X) = sympy.adjoint(X) ⋅(a::T,X) where T<:Number = a*X ⋅(X,Y) = sympy.MatMul(X,Y,evaluate=true)end;x
begin 𝐮₁ = halfsqrt ⋅ [1; 0; 1] 𝐮₂ = halfsqrt ⋅ [0; 1; 0] 𝐮₃ = halfsqrt ⋅ [1; 0; -1] ρ = 1/3⋅ ones(Sym,3,3)end;xxxxxxxxxx""" evaluate generalized probability measure. Gleason 1957"""function f(ρ::Array{Sym},𝐮ᵢ::Array{Sym}) ρᵢ = 𝐮ᵢ ⋅ dagger(𝐮ᵢ); return 𝚝𝚛(ρ⋅ρᵢ)end;Evaluating the function
Now calculating the same for a Hilbert space of
x
begin 𝐯₁ = halfsqrt ⋅ [𝑒^(𝑖⋅ϕ); 0; 0; 𝑒^(𝑖⋅ϕ)] 𝐯₂ = halfsqrt ⋅ [𝑒^(𝑖⋅ϕ); 0; 0; 𝑒^(-𝑖⋅ϕ)]; 𝐯₃ = halfsqrt ⋅ [0; 𝑒^(𝑖⋅ϕ); 𝑒^(𝑖⋅ϕ); 0]; 𝐯₄ = halfsqrt ⋅ [0; 𝑒^(𝑖⋅ϕ); 𝑒^(-𝑖⋅ϕ); 0]; 𝐩 = 1/4⋅ ones(Sym,4,4)end;Evaluating the function
Interestingly we see that in this orthonormal basis set there is a dependence on
x
ϕ⃗ = range(0,stop=pi,length=100);x
begin g = f(𝐩,𝐯₂).simplify(); plot(ϕ′->ϕ′,ϕ′->g(ϕ=>ϕ′),ϕ⃗, xlabel="ϕ",ylabel="v₂(ϕ)", size=(300,200),legend=false, annotate=(pi/2,0.4,text("f(ρ,v₂)→v₂(ϕ)",10)), xticks=([pi*i/4 for i=0:4],[π*i/4 for i=0:4]))end