Problem 1. Consider the hermitian matrix:

O=(00i000i00)

Find the eigenvalues of O using the fact that:

tr(O)=λ1+λ2+λ3

tr(O2)=λ12+λ22+λ32

tr(O3)=λ13+λ23+λ33

12.2 μs
124 μs
55.9 ms
147 μs

Now get the equation representing the equalities in the problem statement.

7.2 μs
59.7 μs
eq1

λ+λ+λ=0 

1.3 ms
eq2

λ2+λ2+λ2=2 

1.8 ms
eq3

λ3+λ3+λ3=0 

2.3 ms
18.3 ms
48.0 μs

Various eigenvalue solutions:

{λ:1, λ:0, λ:1}

387 μs