Problem 2. Consider a 6×6 matrix A=aij, then calculate the partial trace in the basis:

(10)I3,(01)I3.

Also calculate the partial trace with the basis:

(100)I2,(010)I2,(001)I2

11.5 μs

Solution. The key thing to recall is ta the partial trace defines an operator of a subspace so:

A:=trB(AB)i=1NB(IAϕi|)(AB)(IA|ϕi)

where |ϕi define an orthonormal basis in B subspace.

11.6 μs
8.4 s
115 μs
170 μs

Calculate the matrices associated with subspace basis.

8.3 μs
6.0 ms

Now calculate the partial trace in this basis using the equation above

11.1 μs

[A0,0+A3,3A0,1+A3,4A0,2+A3,5A1,0+A4,3A1,1+A4,4A1,2+A4,5A2,0+A5,3A2,1+A5,4A2,2+A5,5] 

20.1 ms

Now looking at the other basis:

7.8 μs
121 μs
6.9 ms

[A0,0+A2,2+A4,4A0,1+A2,3+A4,5A1,0+A3,2+A5,4A1,1+A3,3+A5,5] 

13.9 ms