Problem 1. Consider the density matrix:
show that we have a mixed state. Find the von Neumann entropy.
Solution.
x
1
begin 2
using LinearAlgebra3
endxxxxxxxxxx1
10
1
begin2
⋅ = *3
𝚝𝚛 = tr4
entropy(X::Array{T,1}) where T<: Number = begin5
χ = 0.00e06
for i=1:length(X)7
χ -= X[i]*log(X[i])8
end9
return χ10
end11
12
entropy(X::Array{T,2}) where T<: Number = -1⋅𝚝𝚛(X⋅log(X))13
end;xxxxxxxxxx1
1
begin2
ρ = [5//12 1//6 1//6;3
1//6 1//6 1//6;4
1//6 1//6 5//12]5
end;First we check if the density matrix is idempotent, i.e.
falsexxxxxxxxxx1
1
ρ⋅ρ == ρSo the matrix is not a pure state and indeed a mixed.
The von Neumann entropy can be calculated in two equivalent ways:
where
0.7724450450599503xxxxxxxxxx1
1
entropy(ρ)x
1
𝐞ᵢ = eigen(ρ).values;0.7724450450599518xxxxxxxxxx1
1
entropy(𝐞ᵢ)