SDL Examples
SDL Examples¶
Examples of SDLs for academic research, education, and industry.
Emoji Key¶
The following emoji are used to help represent full autonomy vs. manual intervention for various categories.
| Category | Emoji |
| ---- | ---- |
| Synthesis |π§ͺ|
| Characterization | π¬|
| Sample transfer |ποΈ|
| Experiment planning |π»|
| Manual intervention |βοΈ|
Academic Research¶
Examples of SDLs which are used primarily in academic research settings.
2024 ¶
- π§ͺπ¬ποΈπ» | A dynamic knowledge graph approach to distributed self-driving laboratories. Bai, J.; Mosbach, S.; Taylor, C. J.; Karan, D.; Lee, K. F.; Rihm, S. D.; Akroyd, J.; Lapkin, A. A.; Kraft, M. Nat. Commun. 2024, 15, 462.
2023 ¶
-
π§ͺπ¬ποΈβοΈ | Powder-Bot: A Modular Autonomous Multi-Robot Workflow for Powder X-Ray Diffraction. Lunt, A. M.; Fakhruldeen, H.; Pizzuto, G.; Longley, L.; White, A.; Rankin, N.; Clowes, R.; Alston, B. M.; Cooper, A. I.; Chong, S. Y. arXiv 2023.
-
π§ͺπ¬ποΈπ» | A Robotic Platform for the Synthesis of Colloidal Nanocrystals. Zhao, H.; Chen, W.; Huang, H.; Sun, Z.; Chen, Z.; Wu, L.; Zhang, B.; Lai, F.; Wang, Z.; Adam, M. L.; Pang, C. H.; Chu, P. K.; Lu, Y.; Wu, T.; Jiang, J.; Yin, Z.; Yu, X.-F. Nat. Synth 2023.
-
π§ͺπ¬ποΈπ» | Autonomous, multiproperty-driven molecular discovery: From predictions to measurements and back. Koscher, B.; Canty, R. B.; McDonald, M. A.; Greenman, K. P.; McGill, C. J.; Bilodeau, C. L.; Jin, W.; Wu, H.; Vermeire, F. H.; Jin, B.; Hart, T.; Kulesza, T.; Li, S.-C.; Jaakkola, T. S.; Barzilay, R.; GΓ³mez-Bombarelli, R.; Green, W. H.; & Jensen, K. F. Science 2023.
-
π§ͺπ¬ποΈπ» | Self-driving laboratories to autonomously navigate the protein fitness landscape. Rapp, J. T.; Bremer, B. J.; Romero, P. A. bioRxiv 2023.
-
π§ͺπ¬ποΈπ» | NIMS-OS: An automation software to implement a closed loop between artificial intelligence and robotic experiments in materials science. Tamura, R.; Tsuda, K.; Matsuda, S. arXiv 2023.
2022 ¶
-
π§ͺπ¬ποΈπ» | A Self-Driving Laboratory Designed to Accelerate the Discovery of Adhesive Materials. Rooney, M. B.; MacLeod, B. P.; Oldford, R.; Thompson, Z. J.; White, K. L.; Tungjunyatham, J.; Stankiewicz, B. J.; Berlinguette, C. P. Digital Discovery 2022, 10.1039.D2DD00029F.
-
π§ͺπ¬ποΈπ» | A self-driving laboratory advances the Pareto front for material properties. MacLeod, B. P., Parlane, F. G. L., Rupnow, C. C., Dettelbach, K. E., Elliott, M. S., Morrissey, T. D., Haley, T. H., Proskurin, O., Rooney, M. B., Taherimakhsousi, N., Dvorak, D. J., Chiu, H. N., Waizenegger, C. E. B., Ocean, K., Mokhtari, M. & Berlinguette, C. P. Nat Commun. 2022, 13, 995.
-
π§ͺπ¬βοΈπ» | Autonomous retrosynthesis of gold nanoparticles via spectral shape matching. Vaddi, Kiran; Huat Thart Chiang; and Lilo D. Pozzo. Digital Discovery 2022, 10.1039/D2DD00025C.
-
π§ͺπ¬ποΈπ» | Physics Discovery in Nanoplasmonic Systems via Autonomous Experiments in Scanning Transmission Electron Microscopy. Roccapriore, K. M., Kalinin, S. V., Ziatdinov, M. Adv. Sci. 2022, 9, 2203422.
2021 ¶
-
π§ͺπ¬ποΈπ» | Autonomous Materials Synthesis via Hierarchical Active Learning of Nonequilibrium Phase Diagrams. Ament, S.; Amsler, M.; Sutherland, D. R.; Chang, M.-C.; Guevarra, D.; Connolly, A. B.; Gregoire, J. M.; Thompson, M. O.; Gomes, C. P.; van Dover, R. B. Sci. Adv. 2021, 7 (51), eabg4930.
-
π§ͺπ¬ποΈπ» | Accelerate Synthesis of MetalβOrganic Frameworks by a Robotic Platform and Bayesian Optimization. Xie, Y.; Zhang, C.; Deng, H.; Zheng, B.; Su, J.-W.; Shutt, K.; Lin, J. ACS Appl. Mater. Interfaces 2021, 13 (45), 53485β53491.
-
π§ͺπ¬ποΈπ» | Automated and Autonomous Experiments in Electron and Scanning Probe Microscopy. Kalinin, S. V.; Ziatdinov, M.; Hinkle, J.; Jesse, S.; Ghosh, A.; Kelley, K. P.; Lupini, A. R.; Sumpter, B. G.; Vasudevan, R. K. ACS Nano 2021, 15 (8), 12604β12627.
-
π§ͺπ¬βοΈπ» | Realization of closed-loop optimization of epitaxial titanium nitride thin-film growth via machine learning. Ohkubo, I.; Hou, Z.; Lee, J. N.; Aizawa, T.' Lippmaa, M.; Chikyow, T.; Mori, T. Materials Today Physics 2021, 16, 100296.
-
π§ͺπ¬ποΈπ» | Toward Autonomous Additive Manufacturing: Bayesian Optimization on a 3D Printer. Deneault, J. R.; Chang, J.; Myung, J.; Hooper, D.; Armstrong, A.; Pitt, M.; Maruyama, B. MRS Bulletin 2021, 46 (7), 566β575.
-
π§ͺπ¬ποΈπ» | Using simulation to accelerate autonomous experimentation: A case study using mechanics. Gongora, A. E.; Snapp, K. L.; Whiting, E.; Riley, P.; Reyes, K. G.; Morgan, E. F.; Brown, K. A., Iscience 2021, 24(4).
2020 ¶
-
π§ͺπ¬ποΈπ» | Autonomous Discovery of Battery Electrolytes with Robotic Experimentation and Machine Learning. Dave, A.; Mitchell, J.; Kandasamy, K.; Wang, H.; Burke, S.; Paria, B.; PΓ³czos, B.; Whitacre, J.; Viswanathan, V. Cell Reports Physical Science 2020, 1 (12), 100264.
-
π§ͺπ¬ποΈπ» | Self-Driving Laboratory for Accelerated Discovery of Thin-Film Materials. MacLeod, B. P.; Parlane, F. G. L.; Morrissey, T. D.; HΓ€se, F.; Roch, L. M.; Dettelbach, K. E.; Moreira, R.; Yunker, L. P. E.; Rooney, M. B.; Deeth, J. R.; Lai, V.; Ng, G. J.; Situ, H.; Zhang, R. H.; Elliott, M. S.; Haley, T. H.; Dvorak, D. J.; Aspuru-Guzik, A.; Hein, J. E.; Berlinguette, C. P. Sci. Adv. 2020, 6 (20), eaaz8867.
-
π§ͺπ¬ποΈπ» | ChemOS: An Orchestration Software to Democratize Autonomous Discovery. Roch, L. M.; HΓ€se, F.; Kreisbeck, C.; Tamayo-Mendoza, T.; Yunker, L. P. E.; Hein, J. E.; Aspuru-Guzik, A. PLoS ONE 2020, 15 (4), e0229862.
-
π§ͺπ¬ποΈπ» | Beyond Ternary OPV: HighβThroughput Experimentation and SelfβDriving Laboratories Optimize Multicomponent Systems. Langner, S.; HΓ€se, F.; Perea, J. D.; Stubhan, T.; Hauch, J.; Roch, L. M.; Heumueller, T.; AspuruβGuzik, A.; Brabec, C. J. Adv. Mater. 2020, 32 (14), 1907801.
-
π§ͺπ¬ποΈπ» | Autonomous materials synthesis by machine learning and robotics. Shimizu, R.; Kobayashi, S.; Watanabe, Y.; Ando, Y.; Hitosugi, T. APL Mater. 2020, 8 (11), 111110.
-
π§ͺπ¬ποΈπ» | A Bayesian experimental autonomous researcher for mechanical design. Gongora, A. E.; Xu, B.; Perry, W.; Okoye, C.; Riley, P.; Reyes, K. G.; Morgan, E. F.; Brown, K. A. Sci. Adv. 2020, 6 (15), eaaz1708.
2018 ¶
- π§ͺπ¬ποΈπ» | Networking Chemical Robots for Reaction Multitasking. Caramelli, D.; Salley, D.; Henson, A.; Camarasa, G. A.; Sharabi, S.; Keenan, G.; Cronin, L. Nat Commun 2018, 9 (1), 3406.
2016 ¶
- π§ͺπ¬ποΈπ» | Autonomy in Materials Research: A Case Study in Carbon Nanotube Growth. Nikolaev, P.; Hooper, D.; Webber, F.; Rao, R.; Decker, K.; Krein, M.; Poleski, J.; Barto, R.; Maruyama, B. npj Comput Mater 2016, 2 (1), 16031.
2014 ¶
- π§ͺπ¬ποΈπ» | Evolution of Oil Droplets in a Chemorobotic Platform. Gutierrez, J. M. P.; Hinkley, T.; Taylor, J. W.; Yanev, K.; Cronin, L. Nat Commun 2014, 5 (1), 5571.
Education¶
Examples of SDLs which are used primarily in educational settings.
2023 ¶
-
π§ͺπ¬ποΈπ» | Automated PH Adjustment Driven by Robotic Workflows and Active Machine Learning. Pomberger, A.; Jose, N.; Walz, D.; Meissner, J.; Holze, C.; Kopczynski, M.; MΓΌller-Bischof, P.; Lapkin, A. A. Chemical Engineering Journal 2023, 451, 139099.
-
π§ͺπ¬ποΈπ» | Build Instructions for Closed-Loop Spectroscopy Lab: Light-Mixing Demo. Baird, S. G.; Sparks, T. D. ChemRxiv January 9, 2023.
-
π§ͺπ¬ποΈπ» | Driving school for self-driving labs. Snapp, K. L.; Brown, K. A. Digital Discovery 2023, 10.1039/D3DD00150D.
2022 ¶
-
π§ͺπ¬ποΈπ» | What Is a Minimal Working Example for a Self-Driving Laboratory?. Baird, S. G.; Sparks, T. D. Matter 2022, 5 (12), 4170β4178.
-
π§ͺπ¬ποΈπ» | The LEGOLAS Kit: A Low-Cost Robot Science Kit for Education with Symbolic Regression for Hypothesis Discovery and Validation. Saar, L.; Liang, H.; Wang, A.; McDannald, A.; Rodriguez, E.; Takeuchi, I.; Kusne, A. G. MRS Bulletin 2022, 47 (9), 881β885.
2021 ¶
- π§ͺπ¬ποΈπ» | Augmented Titration Setup for Future Teaching Laboratories. Yang, F.; Lai, V.; Legard, K.; Kozdras, S.; Prieto, P. L.; Grunert, S.; Hein, J. E. J. Chem. Educ. 2021, 98 (3), 876β881.
2020 ¶
-
π§ͺπ¬ποΈπ» | ChemOS: An Orchestration Software to Democratize Autonomous Discovery. Roch, L. M.; HΓ€se, F.; Kreisbeck, C.; Tamayo-Mendoza, T.; Yunker, L. P. E.; Hein, J. E.; Aspuru-Guzik, A. PLoS ONE 2020, 15 (4), e0229862.
-
π§ͺπ¬ποΈπ» | Autonomous Titration for Chemistry Classrooms: Preparing Students for Digitized Chemistry Laboratories. HΓ€se, F.; Tamayo-Mendoza, T.; Boixo, C.; Romero, J.; Roch, L.; Aspuru-Guzik, A. ChemRxiv 2020.
2019 ¶
- π§ͺπ¬ποΈπ» | Rethinking a Timeless Titration Experimental Setup through Automation and Open-Source Robotic Technology: Making Titration Accessible for Students of All Abilities. Soong, R.; Agmata, K.; Doyle, T.; Jenne, A.; Adamo, A.; Simpson, A. J. J. Chem. Educ. 2019, 96 (7), 1497β1501.
Industry¶
Industry examples involving SDLs.
Cloud-based Labs¶
Software-as-a-Service (SaaS)¶
Prospective¶
Ideas for SDLs.
-
Reproducible Sorbent Materials Foundry for Carbon Capture at Scale. McDannald, A.; Joress, H.; DeCost, B.; Baumann, A. E.; Kusne, A. G.; Choudhary, K.; Yildirim, T.; Siderius, D. W.; Wong-Ng, W.; Allen, A. J.; Stafford, C. M.; Ortiz-Montalvo, D. L. CR-PHYS-SC 2022, 3 (10).
-
An Object-Oriented Framework to Enable Workflow Evolution across Materials Acceleration Platforms. Leong, C. J.; Low, K. Y. A.; Recatala-Gomez, J.; Quijano Velasco, P.; Vissol-Gaudin, E.; Tan, J. D.; Ramalingam, B.; I Made, R.; Pethe, S. D.; Sebastian, S.; Lim, Y.-F.; Khoo, Z. H. J.; Bai, Y.; Cheng, J. J. W.; Hippalgaonkar, K. Matter 2022, 5 (10), 3124β3134.
-
Designing Workflows for Materials Characterization. Kalinin, S. V., Ziatdinov, M., Ahmadi, M., Ghosh, A., Roccapriore, K., Liu, Y., & Vasudevan, R. K. (2023). arXiv:2302.04397.